INTERNATIONAL ISO/IEC
STANDARD 8652

Fourth edition
2023-05

Information technology —
Programming languages — Ada

Technologies de l'information — Langages de programmation — Ada

Reference number
ISO/IEC 8652:2023(E)

© ISO/IEC 2023

ISO/IEC 8652:2023(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

ii © ISO/IEC 2023 - All rights reserved

ISO/IEC 8652:2023(E)

Contents
000 a0 o xiii
INEFOAUCHION .o XV
1 SCOPC i 1
A\ (1) 9 1 0B 10 AT T = (=) 1 L 1
3 Terms and definitions ... ————————————————— 2
3.1 Types, objects, and their Properties..... .. ———————————— 2
3.2 Subprograms and their properties ... ——————— 7
3.3 Other SyntactiC CONSEIUCES ... ——————— 7
R TR S 101D 0 a0 01 LT U 00D ¢ 10
3.5 Exceptional SitUations ... 10
I 7= 1) - | 11
4.1 1)1 g0 11 11
4.2 Conformity of an Implementation ... ——————— 12
4.3 Method of Description and Syntax Notation........ s 14
4.4 Classification Of EITOTS ... sssssssssssssssssssssssasass 15
5 LeXical EIeMENLtS ... ssssssssssssssssssssssssssssssssssasnns 16
5.1 CRAracter Sel....ssssssissssssssssssssss s s s asassss s s s s asnnaes 16
5.2 Lexical Elements, Separators, and Delimiters ... 18
5.3 Identifiers.. s s 19
5.4 NUMETicC Literalsccummiiiimsssssssinsnsssasases 20
5.4.1 Decimal LIterals ... ssssssssssssssssssssssssssssens 20
5.4.2 Based LIiterals......sssssmssssisssas 21
5.5 Character LIiterals.... s 21
5.6 String Literals ... s assssas 21
LI A 007 111 11 1<) 1L 22
LR S 0 - 14 1 T- 1 . 22
5.9 ReSErved WOIdS.....oummnmimimisssmsmsssssisssssssssssssssssssssssssssssssssssssassssssesss s ssssssssasss s ssssssssssssasas 25
6 Declarations and TYPes.....cmmmmmmmmsmsssmsessmsssnses 25
LS T D XYl 1 o 1 1) 1 25
6.2 Types and SUDEYPES ... s asassssass 27
6.2.1 Type Declarations.......commmmssisismsssssssssssssssssss s ssssasasasssses 28
6.2.2 Subtype Declarations ... ss————————— 29
6.2.3 Classification of Operations....... s —————————————— 30
6.2.4 Subtype Predicates.... . 31
6.3 Objects and Named NUMDETScocvciimnmnmnmsmsmisismssns 34
6.3.1 Object Declarations.......umsssssss s 36
6.3.2 Number Declarations ... 39
6.4 Derived Types and ClaSSeS......ummmssssssssssssssss s 39
6.4.1 Derivation ClaSSes ... ssss s s ssssssasas 42
ST Yor- 1) a7 0 2, 44
6.5.1 ENUMEration TYPeS...mnmsssssmsmsssasas 47
6.5.2 Character TYPES .. s sas 48
6.5.3 B00lean TyPes.....ouinmmmsmsnsssssssssssssssssssssssssssssssssss s ssssssssssssssssssssssssssssssssasssssssssssasas 49
6.5.4 DL) ol 74 o L 49
6.5.5 Operations of DiSCrete TYPES ... 52
6.5.6 T T 4 1 53
6.5.7 Floating POINE TYPES...cmnmmsssssmsmsssasssssssssssssasss 54

© ISO/IEC 2023 - All rights reserved

iii

ISO/IEC 8652:2023(E)

7

iv

6.5.8 Operations of Floating Point TyPes ... 55
6.5.9 FiXed POINt TYPES .. ssasasassssssssssssssssasasas 56
6.5.10 Operations of Fixed Point Types......ummmmmssssssssssssssss 58
6.6 ATTAY TYPES iiiimrirmsrsnisismsssssnsssssssssssssssasassssssssssssssssssssssassssssssssessss st sssmsasasas s s s sesssssssssasasasansnsnsnsssnns 59
6.6.1 Index Constraints and Discrete Ranges ... 61
6.6.2 Operations of Array TYPES ... sssssssasssssssssssssssssssssasas 62
6.6.3 SEFING TYPES e e R R s 63
6.7 DiSCriMIiNANtS ..o ———————————————————— 63
6.7.1 Discriminant Constraints.....ssssssssssss————————, 66
6.7.2 Operations of Discriminated Types......mssssssssssssss 67
LSTE2 T 2 - 00) i 4 1 67
6.8.1 Variant Parts and Discrete Choices ... 70
6.9 Tagged Types and Type EXEENSIONSccuniiiismmsmsssmsmsmsssas 72
6.9.1 Type EXEeNSIONS....coiiismsmsmssasasssssssssssssssssssssssssssssssssssanas 75
6.9.2 Dispatching Operations of Tagged TyPes.....mmmmmsssssssss 76
6.9.3 Abstract Types and SUDPrograms ... 79
6.9.4 INEETface TYPES .o s s 80
6.10 ACCESS TYPEOS wouriiiierimsmismssissssssssssssssss s a s AR AR SRR AR AR AR SRR AR AR R AR R R AR R R AR RS 82
6.10.1 Incomplete Type Declarationss———n 85
6.10.2 Operations Of ACCESS TYPES ...oumnmsmsmsmsmsmssssmsmssssssssssssssssssssssssssssssssss s sasssssssssssssas 87
6.11 Declarative Parts......ssssssssssssssss s s 93
6.11.1 Completions of Declarations..........cui s ———— 93
Names and EXPresSions. ... msmmsmmsmmssans 94
7% S = 114 94
7.1.1 Indexed COMPONENTS ... ————— 95
7.1.2 SHICES curuirrrmmim s ——————————————— 96
7.1.3 Selected COMPONENLES......cumccmsmmmsmmsssssss s ————————— 97
7.1.4 ARTIDULES . ———————————— 99
7.1.5 User-Defined References.........umiimssssssssssssssssssssssssssssssssssssssns 100
7.1.6 User-Defined INAeXingcmmmss 101
N 10 - i 103
7.2.1 User-Defined Literals.....cmmsssssssssssssssssssssns 104
7.3 ABBIegalesS . ————— 106
7.3.1 ReCOrd AGEregates ... ssssssssas 106
7.3.2 EXtension Aggregates ... 108
7.3.3 ATTAY ABBIreZates. ... s e R s 110
7.3.4 Delta AGEregates. ... ————————————— 114
7.3.5 Container AGregates ... s 115
A TN 25 4 0] WX 1)) 4 121
7.5 Operators and Expression EValuation........usssssss 123
7.5.1 Logical Operators and Short-circuit Control FOrms ... 124
7.5.2 Relational Operators and Membership Tests.......ccounmnms 125
7.5.3 Binary Adding OPerators ... 128
7.5.4 Unary Adding OPeratorsS.....mmsssisisss 129
7.5.5 Multiplying OPerators ... —————— 129
7.5.6 Highest Precedence OPerators......mmssismsmssas 132
7.5.7 Conditional EXPreSSIons ... sssssssssssssssssssas 132
7.5.8 Quantified EXPreSSIONS ... smssssssmsmsmsssasas 134
7.5.9 Declare EXPreSSiOns ... s sssasssssssssssssess 135
7.5.10 Reduction EXPreSSiOns....ummssas 136
7.6 Type CONVEISIONS...ccuuvsmimsmisisisssmmssssssssssssssssssssss s s s s ssssasas 139
7.7 Qualified EXPreSSiOnS. .. ssssasas 144
7 T - N L 0 T 1 (1) o 144
7.9 Static Expressions and Static SUDtypes.......unssss s 146
7.9.1 Statically Matching Constraints and Subtypes ... 150

© ISO/IEC 2023 - All rights reserved

ISO/IEC 8652:2023(E)

7.10 IMAage AtTIDULES .o 151
8 Statements ... ——————————————————— 154
8.1 Simple and Compound Statements - Sequences of Statements..........cocvcvrnsmsesesnsnnns 155
8.2 Assignment StatemMents.....cccimmm s ————————————— 156
8.2.1 Target Name Symbols......mmsssssss 158
8.3 If StateMENLS ..o ———————————_———— 158
8.4 Case Statements ... ———————————————_—_—=————_—— 159
8.5 LOOP StAtEMENLS ..o s s smsas s s s sn s e 160
8.5.1 User-Defined Iterator TYPesS... s 164
8.5.2 Generalized Loop Iteration ... 166
8.5.3 Procedural Iterators. ... 169
8.6 BlOCK Statements ... ———————————————- 172
8.6.1 Parallel Block Statements........ommmnmmmmnsssssssssssssssns 172
8.7 EXit Statements ... ——————————————. 174
8.8 GOto Statements ... ———————_———_—— 175
O SUDPIOZraAMS...cccccrimssssssssss s 175
9.1 Subprogram Declarations ... ——————————————- 176
9.1.1 Preconditions and Postconditions ... 178
9.1.2 The Global and Global'Class ASPeCtS.......cummmmmmm——————— 183
9.2 Formal Parameter MOdes ... 186
9.3 Subprogram Bodies ... s 187
9.3.1 Conformance RUIES ... 188
9.3.2 Inline Expansion of SUDPrograms.........ssssns 190
9.4 Subprogram Calls ... ——————————————————— 190
9.4.1 Parameter ASSOCIAtioNS ... ——————————— 192
9.5 Return Statements ... ———————————————— 194
9.5.1 Nonreturning SUDPrograms......csm—————————— 197
9.6 Overloading Of OPerators ... ——————————— 198
9.7 NUll ProCeAUIES.....cisiirssissssssssssssssssssssss s sssassss s s ssasassssssssaes 199
9.8 EXPression FUNCHIONS ... ssssssssssssssssssssssssssssssaes 199
0 I o Tl € ¥ oL 201
10.1 Package Specifications and Declarations ... 201
10.2 Package Bodies.....missssssssssssssssssssssssssss s 202
10.3 Private Types and Private EXteNSIiONScccoumiiimmsmssmsssssssssssss s 203
10.3.1 Private Operations ... 205
10.3.2 Type INVAriants ... 208
10.3.3 Default Initial CoNditions ... ————————— 211
10.3.4 Stable Properties of 2 TYPeccouniinmmsnsssssnmss 211
10.4 Deferred CONSTANES ... s sassssns 213
10.5 LiMIted TYPES wororccrrrmrmsmsmsmssssssssmsssssisesssssmsssasas s s sssessssssssasasass 214
10.6 Assignment and Finalization......usssssssssss. 216
10.6.1 Completion and FinaliZation ... 219
11 Visibility Rules.... s sssssssssssnss 221
11.1 Declarative ReGION ... sssssssasas s sssssssssssasasass 221
11.2 Scope of Declarations. ... ——————————— 222
30T T Y T 1)1 o 223
11.3.1 Overriding INdicators.......m—————————— 226
0 S 0L 08 1 227
11.5 Renaming Declarations......mssssssssn. 228
11.5.1 Object Renaming Declarations ... 228
11.5.2 Exception Renaming Declarations ... 230
11.5.3 Package Renaming Declarations......nmmmssssssssssssssssssssssssnss 230
11.5.4 Subprogram Renaming Declarations........... 230

© ISO/IEC 2023 - All rights reserved \Y

ISO/IEC 8652:2023(E)

11.5.5 Generic Renaming Declarations ... 232
11.6 The Context of Overload ReSOIULION ... sssssssssssssssssssasass 233
12 Tasks and Synchronizationssssmemsmsssm—————ns 235
12.1 Task Units and Task ODJectS......cmmmmmmmmssasasasasas 236
12.2 Task Execution - TasK ACtIVAtiONccounnminmsmsmsmssasasasssss 238
12.3 Task Dependence - Termination of Tasks ... 239
12.4 Protected Units and Protected ODjJecCtScuumminrsnsmsmsmsmsmsmsmsssssssssssssssssssssssssssssassssss 241
12.5 Intertask COMMUNICAION ..o sanans 244
12.5.1 Protected Subprograms and Protected ACtionsS........cuummnmsmsmsmmsmsmsssssssnsissssss 248
12.5.2 Entries and Accept Statements........css s ———————" 250
02570 T 2 1 U A 07 1 | 253
12.5.4 Requeue StateMENLS ... —————— 255
12.6 Delay Statements, Duration, and TIME—————————" 257
12.6.1 Formatting, Time Zones, and other operations for TImeccuummsmssissusesnans 260
020 1) Tt Y 1) 1 0L 266
12.7.1 SelectiVe ACCEPT s s sssssnsnsssssssss s s s s s s s snsmsasasassnsss 266
12.7.2 Timed ENtry Calls ... 268
12.7.3 Conditional Entry CallS......mssssssssssssssssssssssssssssssssssss 269
12.7.4 Asynchronous Transfer of CONtrol.......————— 269
12.8 Abort of a Task - Abort of a Sequence of Statementscccensmsnnnsnssmsss 270
12.9 Task and Entry AtribDutes ... 272
12.10 Shared Variables ... 272
12.10.1 Conflict Check POLICIES ...ccinsmsssssssnssssmsmsmsssasas 274
12.11 Example of Tasking and Synchronization ... 276
13 Program Structure and Compilation ISSUEScccumniinmsnnmnissss. 277
13.1 Separate CompPilation ... ————————————— 277
13.1.1 Compilation Units - Library UNits ... 278
13.1.2 Context Clauses - With Clauses.......cummmmmmmssmsmmmmsssssssssssssssssssssssssssasasssss 281
13.1.3 Subunits of Compilation UNits ... 283
13.1.4 The ComMPilation ProCeSS....ccmmsmmmsmmsmsmsmsmssasasasssses 284
13.1.5 Pragmas and Program UDILtS ... 285
13.1.6 Environment-Level Visibility Rules........ccuommiinnnnnisssssssssssssssssssess 286
13.2 Program EXeCUtioN.......mmmmmsssssssssssssssssssssssssssssssssssssasss 286
13.2.1 Elaboration CONtrol...... s 288
32 S 05 o] 1.1 1) ¢ 291
14.1 Exception Declarations......sssassssss 292
14.2 Exception HandIersssasans 292
14.3 Raise Statements and Raise EXPressions ... 293
14.4 Exception HaNAliNgccmnmnmssssssissasans 294
14.4.1 The Package EXCePtiONS.... s sssssssssssssssssasasssss 295
14.4.2 Pragmas Assert and ASSertion_PoliCY ... 297
14.4.3 Example of Exception Handlingnnmsnnmnmmsssssssssssssssssssssssssssess 299
14.5 Suppressing ChecKS.....ssssssss s 300
14.6 Exceptions and OptimMiZation ... 303
15 GENETIC UNILS ..ociiiicnsmssssisssssssssssssssssssssssssssssss s sssasassens 304
15.1 Generic Declarations ... 304
15.2 GeNEriC BOIeSccuiiimmmmmsmsmssisisssasasasssans 306
15.3 Generic InStantiationN......ou i —————————— 307
15.4 FOrmal ODJECES ... ssassss st s ssssss s s ssasans 309
BT 0 ¢ (1B T 7 0 310
15.5.1 Formal Private and Derived TYPEescummmmmmmmmmssssssssssssssssssssssssss 312
15.5.2 Formal Scalar TYPEeScuiimmsmsmsmmissasasassssss 314
15.5.3 FOrmal ATrray TYPeS...ccommmmsmsmmsissmssassssssssssssssssssssasssass 314

vi © ISO/IEC 2023 - All rights reserved

ISO/IEC 8652:2023(E)

15.5.4 FOrmal ACCESS TYPES .covrruiimsmsmsmsmsmsmsisssssmsssasasasssssssss 315
15.5.5 Formal Interface TYPEeSmmmmmmmsmssmsmssasasassssssnss 316
15.6 FOrmal SUDPIOZTaISccoiiiimsmsmsmisisssmsmssssssssssssssssssssssss s sssssssssasssssssssssssassssasssass 316
15.7 Formal PacCKages ... sssassasas 319
15.8 Example of a Generic PACKaZe ... sssssssssssasasas 321
16 Representation ISSUES....... s ——————— 322
16.1 Operational and Representation ASPECES......mmmmsssssssss s 322
16.1.1 Aspect SPecifications......ccnm s ———————— 326
16.2 PaACKEA TYPES cerururcmmrmsmsmsmsmssssssssssssssssssssssssmsssasss s sssssssssssssssssssssssss st sssssssasss s s sssssssssssasssass 329
16.3 Operational and Representation Attributescom———— 330
16.4 Enumeration Representation Clauses ... 337
16.5 ReCOrd LaYOUL......oiimnmsminisismsssssssssssssssssssssssss s ssssssssssssssssssssssssssssssssssssasassssssssssssssssssasasass 338
16.5.1 Record Representation ClausSes ... 338
16.5.2 Storage Place Attributes........cunnns s 341
16.5.3 Bit OTdering ... ssassss s s asassssas 341
16.6 Change of Representation ... ————————— 342
16.7 The Package SYSTEIN ... sssssssssssssssssssssssassssns 342
16.7.1 The Package System.Storage_Elements.........cuunmnimsmnmsnsssssmssssssssssssssssssssssnas 344
16.7.2 The Package System.Address_To_Access_CONVErSIiONS.....uumsmsssssssassssnsnss 345
16.8 Machine Code INSEIrtiONs ... ———————————————— 346
16.9 Unchecked Type CONVETSIONS....ccuummimmmsmsmsssssssmssssssssssssssssssssssssssssssssssassssssssssssssssssassssss 347
16.9.1 Data Validity ..o 348
16.9.2 The Valid AHIIDULE ... s 349
16.10 Unchecked Access Value Creation......u s 349
16.11 Storage Management ... s 350
16.11.1 Storage Allocation AttriDULeS ... ———— 353
16.11.2 Unchecked Storage Deallocation ... 354
16.11.3 Default Storage Pools.......sssssssssssssssaes 355
16.11.4 Storage SUDPOOIS ... —————— 356
16.11.5 Subpool Reclamation ... 359
16.11.6 Storage Subpool EXample......ssssssss 359
16.12 Pragma Restrictions and Pragma Profile......... 362
16.12.1 Language-Defined Restrictions and Profiles.........cconnnmnnnnnnsssnsnsssnssans 363
I I T o T)1 1 365
16.13.1 The Streams SUDSYSTEIM ..o s 365
16.13.2 Stream-Oriented AribUtes ... —————— 368
16.14 Freezing RUleS.... s ssssssassssss 373
Annex A (normative) Predefined Language Environment........ccocussmmmsssmsssssssssssanans 376
A.1 The Package Standard ... ssssssssssasssss 379
A2 The PacKage Ada.....ccummmmmmiminisimsssmssssisssasassssssssess 384
A.3 Character Handling.......ssssssssssssssssssssssssssss 384
A.3.1 The Packages Characters, Wide_Characters, and Wide_Wide_Characters.. 384
A.3.2 The Package Characters.Handling........cun, 385
A.3.3 The Package Characters.Latin_1.......ssssssssssssssss 387
A3.4 The Package Characters.CONVersions ... 395
A.3.5 The Package Wide_Characters.Handling.........cccuornmsmsssmsmsmsmsmsmsssssssssssssssssssseses 397
A.3.6 The Package Wide_Wide_Characters.Handlingccoomnnmsnsnnnssssnsssssssnnns 400
A4 String HandlINg ... sssssssssasasssssssssss 400
A4.1 The Package Strings......cusssssssssssssss 400
A4.2 The Package Strings.Mapsccuiiimsmsmsmsmsmimsssns 401
A4.3 Fixed-Length String Handling ... 404
A4.4 Bounded-Length String Handling ... 412
A4.5 Unbounded-Length String Handling..........ounnn, 419
A.4.6 String-Handling Sets and Mappings ... 425

© ISO/IEC 2023 - All rights reserved vii

ISO/IEC 8652:2023(E)

A.4.7 Wide_String Handling.......omssasssss 425
A4.8 Wide_Wide_String Handling ... 428
A.4.9 String Hashing ... sssssssssssssssssssas 430
A4.10 String COMPATISON ..o s 431
A4.11 String ENCOAING ... ccicimnninsmsmsssssssssssssssssssissssssssssssss s ssssssssssssssssssssssssssssssssssssasasassssss 432
A.4.12 Universal TexXt BUffers......sssssssssssssssssssssss 437
A.5 The Numerics PacKagesumisssasassssssss 439
A.5.1 Elementary FUNCLIONS ... sssssssssssssassssssssssssssssssssasas 440
A.5.2 Random Number GEeNneration ... s 443
A.5.3 Attributes of Floating Point TYPeScummmmmsssssssssssssssssssssssssssssssssss 448
A.5.4 Attributes of Fixed POInNt TYPES ..cccnnsmssssssssssssssmsmssssssssssssssssssssssssssssssssssasasssssss 452
A.5.5 Big NUIMDETS c.ccoicciisisisssssssssssssssssss s sssssssssssssssss s ssssassssssssssssssas 453
A.5.6 33 F e LU= . 453
A.5.7 23 g 2 1 (. 455
A6 INPUL-OULPUL...ciiiiri s ————————————————————— 457
A.7 External Files and File Objectsccuunnnnmmnmnmmmnmsmssssmssasens 457
A.8 Sequential and Direct Files......c.ommssssssssssssssans 458
A.8.1 The Generic Package Sequential_I0 ... 459
A.8.2 File Management ... s sasssssssssssssess 460
A.8.3 Sequential Input-Output OPerationso————— 462
A.8.4 The Generic Package Direct_I0 ... 463
A.8.5 Direct Input-Output Operations ... ——————————————.. 464
A.9 The Generic Package Storage_l0 ... 465
A.10 TeXt INPUL-OULPUL ... s e s 466
A.10.1 The Package TeXt_I0immmmmsssasasassssss 467
A.10.2 Text File MAnagementccummsissssmssasass 475
A.10.3 Default Input, Output, and Error FIles...... s 475
A.10.4 Specification of Line and Page Lengths........ccovvninnmnnsnsssssnsssssss 476
A.10.5 Operations on Columns, Lines, and Pages........ccunmmmmnsssmsssss 477
A.10.6 Get and PUut ProCeAUIESmnmiimsmsssasasssss 480
A.10.7 Input-Output of Characters and Strings........m————————— 481
A.10.8 Input-Output for Integer TYPES ... 483
A.10.9 Input-Output for Real TYPES ... 485
A.10.10 Input-Output for Enumeration TYPes ... 487
A.10.11 Input-Output for Bounded Strings......c.oummmmnmmssssssss 488
A.10.12 Input-Output for Unbounded Strings ... 489
A11 Wide Text Input-Output and Wide Wide Text Input-Output......cccociesmsesesesnsnsns 491
A.12 Stream INPUt-OULPUL ... —————————————— 491
A.12.1 The Package Streams.Stream_I0 ... 491
A.12.2 The Package Text_[0.TeXt_SIreams ... 494
A.12.3 The Package Wide_Text_10.TeXt_Streams.......ummmmmsmmsmssmsssssssssssssssasasasssass 495
A.12.4 The Package Wide_Wide_Text_I0.TeXt_Streams.......messssssssssssnns 495
A.13 Exceptions in INput-Output......cmmmmsssssssssss 495
A.14 File Sharing ... ssasas 497
A.15 The Package Command_Line ... 497
A.15.1 The Packages Wide_Command_Line and Wide_Wide_Command_Line......... 498
A.l16 The Package DIirectories ... 498
A.16.1 The Package Directories.Hierarchical_File_Names.........cccoummmmrmnmsesmsesnsasassnenns 506
A.16.2 The Packages Wide_Directories and Wide_Wide_Directories..........cuuuesins 507
A.17 The Package Environment_Variables........ussssssss 507
A.17.1 The Packages Wide_Environment_Variables and
Wide_Wide_Environment_Variablesccimimimmmsmmsmmsssns 509
A.18 L0703 1L T4 L) . 509
A.18.1 The Package CONTAINETS ..ciiiicmsmsmsssiissasasssss 511
A.18.2 The Generic Package Containers.Vectors.......umssss 511

viii © ISO/IEC 2023 - All rights reserved

ISO/IEC 8652:2023(E)

A.18.3 The Generic Package Containers.Doubly_Linked_LiStscuumsmsssssnsnns 545
W00 2 1) o 567
A.18.5 The Generic Package Containers.Hashed_Mapsc.comsmsmmmsmsmsesssssssssassssssssnns 577
A.18.6 The Generic Package Containers.Ordered_Mapscummsmsmsmsmsmssssssssssssssasens 586
W 1S T Y - 597
A.18.8 The Generic Package Containers.Hashed_Sets...........ccummnmscsnsnnnssnmsssnsssssissenens 608
A.18.9 The Generic Package Containers.Ordered_Sets........sssssssssns 618
A.18.10 The Generic Package Containers.Multiway_Trees ... 631
A.18.11 The Generic Package Containers.Indefinite_Vectors ... 667
A.18.12 The Generic Package Containers.Indefinite_Doubly_Linked_Lists 668
A.18.13 The Generic Package Containers.Indefinite_Hashed_Maps........ccuuresenenens 669
A.18.14 The Generic Package Containers.Indefinite_Ordered_Mapscouusseseasns 669
A.18.15 The Generic Package Containers.Indefinite_Hashed_Sets..........ccccceevuneneene 670
A.18.16 The Generic Package Containers.Indefinite_Ordered_Sets..........ccuursseunass 670
A.18.17 The Generic Package Containers.Indefinite_Multiway_Trees.........c.ounsunens 670
A.18.18 The Generic Package Containers.Indefinite_Holders.........cocuunimsmsrsssnesnans 671
A.18.19 The Generic Package Containers.Bounded_Vectors.........mmnn: 676
A.18.20 The Generic Package Containers.Bounded_Doubly_Linked_Lists............. 677
A.18.21 The Generic Package Containers.Bounded_Hashed_Maps........ccuereissinsenens 679
A.18.22 The Generic Package Containers.Bounded_Ordered_Maps........cussssseseasns 680
A.18.23 The Generic Package Containers.Bounded_Hashed_Setscccoeveiniinsunens 682
A.18.24 The Generic Package Containers.Bounded_Ordered_Setscuumrssesensns 684
A.18.25 The Generic Package Containers.Bounded_Multiway_Treesc.coususunens 685
A18.26 Array SOTTING.. oo s sssasasassssssess 687
A.18.27 The Generic Package Containers.Synchronized_Queue_Interfaces........... 689
A.18.28 The Generic Package Containers.Unbounded_Synchronized_Queues..... 690
A.18.29 The Generic Package Containers.Bounded_Synchronized_Queues........... 690
A.18.30 The Generic Package Containers.Unbounded_Priority_Queues 691
A.18.31 The Generic Package Containers.Bounded_Priority_Queues.........ccounsunens 693
A.18.32 The Generic Package Containers.Bounded_Indefinite_Holders................. 694
A.18.33 Example of CONtaiNer USEcosmsmssmsmmsmsmmsss 694
A.19 The Package LOCALES ... ssssssssssssssssssssssssssssssses 697
Annex B (normative) Interface to Other Languages ... 698
B.1 INterfacing ASPECLS ... s s asasass s s 698
B.2 The Package INterfaces ... 701
B.3 Interfacing with C and CH+ ... 702
B.3.1 The Package Interfaces.C.Strings ... 709
B.3.2 The Generic Package Interfaces.C.POINters ... 712
B.3.3 Unchecked Union TYPeS....umiismmsmmmmmssses 714
B.4 Interfacing with COBOL........issssss s ssssssssssssssss 716
B.5 Interfacing with FOrtran ... 722
Annex C (informative) Systems Programming.........mmmmsmmssssssssssssss 725
C.1 Access to Machine OPerations ... s 725
C.2 Required Representation SUPPOTt..... s ssssssssssses 726
C.3 INLEITUPT SUPPOTIt..ciicissssrsssssssssssssssssssmsssssssssssssssssssssssssssssssassssssssssssssasssassssssssssssasasassssssnses 726
C3.1 Protected Procedure Handlers.......iiimmnnnninsesesssmssssssssssssssssssssssssssssssssssssans 728
C.3.2 The Package INterrupts. ... 730
C.4 Preelaboration ReqUiIrements.......msssssssssssssssss s 732
C.5 Aspect Discard_NamesS.....cumiimmmsmmmmssssssssssssssss s sssssssasassssssssss 732
C.6 Shared Variable CONtrol........ccciimiiniemmemsssssissnses 733
C.6.1 The Package System.Atomic_OPerations ... 736
C.6.2 The Package System.Atomic_Operations.Exchange........cicncsnsnsnsnseneans 736
C.6.3 The Package System.Atomic_Operations.Test_and_Setcoonirsenrsnscscsnanns 737
C.64 The Package System.Atomic_Operations.Integer_Arithmetic.......ccccerererenene 738

© ISO/IEC 2023 - All rights reserved ix

ISO/IEC 8652:2023(E)

C.6.5 The Package System.Atomic_Operations.Modular_Arithmeticcccoeurerenens 739
C.7 Task INformations——————————————— 740
C.71 The Package Task_IdentifiCation......nminmmssssssssssssssssssssssssssssssssssess 740
C.7.2 The Package Task_Attributes......s s 742
C.7.3 The Package Task_Termination...... s 744
Annex D (informative) Real-Time SyStems.......ccummmmnmnmnmnmnmsmsssssmsmsmssssssssssssss 746
D.1 TasK Priorities... s s 746
D.2 Priority SCheduling ... 748
D.2.1 The Task Dispatching Model.........cmm——— 748
D.2.2 Task Dispatching Pragmas........ccmmmsssssssssssss s 750
D.2.3 Preemptive DiSpatChing ... 751
D.2.4 Non-Preemptive DiSpatching.......couimmnssssssssssssssss 752
D.2.5 Round Robin DisSpatching ... 753
D.2.6 Earliest Deadline First Dispatching.........cus 754
D.3 Priority Ceiling LOCKING......ccuusinmnmmmsmmssssissas 757
D.4 Entry Queuing PoliCies......mmsimss 759
D.4.1 AdmisSion POliCIes. ... sssssssasasssssss 761
D.5 Dynamic PrioTiti€s ... 761
D.5.1 Dynamic Priorities for Tasks ... 761
D.5.2 Dynamic Priorities for Protected ObJectsc.coommnmnmsmsmsmismsmsssssssssssssssssssssssnas 762
D.6 Preemptive ADOIt ... s ssas 763
D.7 Tasking ReStriCtions ... s 764
1D 22 T 1T (0 0 101 0 1 U Lol 15 s U3 767
D.9 Delay ACCUTIACY .coisesisrsssmssassssssssssssssss 770
D.10 Synchronous Task CONtrol ... 771
D.10.1 Synchronous BarTiers..... s 772
D.11 Asynchronous Task CONtrol.......sssssssssses 773
D.12 Other Optimizations and Determinism Rules.........ccocunmnnnnnsmsnsnsnsssssssmsssssssssnns 774
D.13 The Ravenscar and JOrvik Profiles ... 775
D.14 EXecution Time.....ssssssssssssssssssss s 777
D.14.1 Execution Time TiIMEersScmmmsssnss 779
D.14.2 Group Execution Time Budgets.........ccocummmmmiimmsmsmsmnmsmsmsmsmmssssssssssssssssssssssssssases 780
D.14.3 Execution Time of Interrupt Handlers ... 783
D.15 TIMING EVENLS ... ssssssasss s ssssssssssssssssassssssesssssens 783
D.16 Multiprocessor Implementation.......———————— 785
D.16.1 Multiprocessor Dispatching DOMAINS ... 786
Annex E (informative) Distributed Systems........cccinmimsnnnnn. 789
D N o) 1 () o 789
E.2 Categorization of Library UNILtS ... 790
E.2.1 Shared Passive Library UNits. ... 791
E.2.2 Remote Types Library UNits......ssssssssssssssssssssss 792
E.2.3 Remote Call Interface Library UNits......usssssssssssssss 793
E.3 Consistency of a Distributed SyStem........commnnnin———— 794
E4 Remote Subprogram Calls ... 795
E4.1 Asynchronous Remote Calls ... 796
E.4.2 Example of Use of a Remote Access-to-Class-Wide Typecoovvcsmsermsmsmsnsnsnsns 797
E.5 Partition Communication SUDSYSteM.....ccooimmnmsmsimnm s 798
Annex F (informative) Information SyStems......counmnmnmsmsmsmsmssssssssssssssssssssssssssseess 801
F1 Machine_Radix Attribute Definition Clause ... 801
F.2 The Package Decimal........osssmssases 801
F.3 Edited Output for Decimal TYPesccccummmmsmnmimmmsmsmsmsssssmssssmsmsses 802
F.3.1 Picture String FOrmation.......u s 804
F.3.2 Edited Output GENETratioNo ssas 807
F.3.3 The Package TexXt_I0.EAIting........cismmnisssess 811

X © ISO/IEC 2023 - All rights reserved

ISO/IEC 8652:2023(E)

F.3.4 The Package Wide_Text_I0.Editingccuummnmmsssssmsssnsssssssssmsssssssssssssssssssssssssssses 814
F.3.5 The Package Wide_Wide_TeXt_I0.Editing.........ccummrmsermsmsmsmsmsssssssssssssssssssssssssssases 814
Annex G (informative) NUIMETICS ...ccommmumsmsmsmmsmsssmsmssssssmsssassssssss 815
G.1 Complex ArithmeticC..... s ————————————— 815
G.1.1 L0000 111 0] = " 174 01T, 815
G.1.2 Complex Elementary FUNCHIONS.......ccinmmmmssses 819
G.1.3 CompleX INPUt-OULPUL ... ———————— 823
G.1.4 The Package Wide_Text_10.CompleX_I0oinmmsmsnsmsmsmsmsmsmssssssssssssssssssssssssases 825
G.1.5 The Package Wide_Wide_Text_10.CompleX_[0.......cocucimimmmsmsmsmsmsnsssssssssssssssssssseses 825
G.2 Numeric Performance ReqUirements........coummmmmmssssssssssssssssssssssss 825
G.2.1 Model of Floating Point Arithmetic......c.omminsns 826
G.2.2 Model-Oriented Attributes of Floating Point Types........comnmnmsesssssnsesesssnsns 827
G.2.3 Model of Fixed Point Arithmetic ... ssssssssssses 828
G.2.4 Accuracy Requirements for the Elementary Functions........oc. 829
G.2.5 Performance Requirements for Random Number Generation.........ccccuuseseses 831
G.2.6 Accuracy Requirements for Complex Arithmeticccuvsmscsmsmsmsmsmssssssssissanens 831
G.3 Vector and Matrix Manipulation........ssssssssssns 833
G.3.1 Real Vectors and MatriCesssmmmsss 834
G.3.2 Complex Vectors and MatriCes.....cmmmmsmmsssssssssssssssssssssssss 838
Annex H (informative) High Integrity Systems........oommnmsmssnmsmssmsmsssmmsssssns 849
H.1 Pragma Normalize_ScCalars.......mmmmsses 849
H.2 Documentation of Implementation DeciSions.........cumnimnnmnssss 850
H.3 Reviewable Object Code......mmmmmmssssns 850
H.3.1 Pragma Reviewable ... 850
H.3.2 Pragma Inspection_Point..........cummisssssssssssssnn, 851
H.4 High Integrity ReStrictions ... 852
H.4.1 Aspect No_Controlled_Partsccmmmmsissssssssssssssssssssssssssssssasasass 855
H.5 Pragma Detect_BlOCKINGcccoirimiimnmnmnmnmssissssssssssssssssmssaes 855
H.6 Pragma Partition_Elaboration_PoOliCy ... 855
H.7 Extensions to Global and Global'Class ASPECESccuurrrmmsmsmsssmsmsmsmssssssssssssssssssseseses 856
H.7.1 The Use_Formal and Dispatching ASPects ... 857
Annex I (normative) Obsolescent Features.......mmmmmsssssssss 860
1.1 Renamings of LIBrary UNItS ... 860
1.2 Allowed Replacements of Characters ... 860
1.3 Reduced ACcuracy SUDLYPES ... sssasssssssss 861
1.4 The Constrained AttribUte ... ——————————— 861
L5 00 862
I.6 JA\LY 05 4 <3 i (ol D8 0) 862
1.7 L L 08 11 L 862
L7.1 INterrupt ENLIies s ssssssssssaes 863
1.8 MO ClAUSES ..uceeierassrsssssssssssssssssssasassssssssssssssssssssssssasassssssssssssssssssasasas s sssnsnsnsssmsasasassssnsnsnsnssssssns 864
1.9 The Storage_Size Attribute..... i ———————— 864
.10 Specific Suppression of CheckKs.......comnsssssss 865
.11 The Class Attribute of Untagged Incomplete Types......ccouvvmsmsmsmsmsmsmssssssssssssssssssesesns 865
12 Pragma Interface ... 865
.13 Dependence Restriction Identifiers ... 865
.14 Character and Wide_Character Conversion FUNCtiONS.......cummmmmemimmmmmsmsssssesns 866
.15 Aspect-related Pragmas....mmsssssssssssssssssssssssssss s 866
L15.1 Pragma Inline... s 867
[.15.2 Pragma NO_RETUI ... s ssssssssssasans 867
L15.3 Pragma PacK...ssssssssss s s 867
[.15.4 Pragma Storage_SiZe.....ssssssssssssss s 868
1.15.5 Interfacing Pragmas ... 868
I.15.6 Pragma Unchecked_UNion........usssssssssssssssssssssssssssssssssses 869

© ISO/IEC 2023 - All rights reserved Xi

ISO/IEC 8652:2023(E)

1.15.7 Pragmas Interrupt_Handler and Attach_Handler..........ccvmrrssnsnsnsnsnsnsnsnsnsnns 869
1.15.8 Shared Variable Pragmas ... 870
L15.9 Pragma CPU ... ssssassssssssssssssas 870
1.15.10 Pragma Dispatching DOmain.....ccmmsssssssssssssssssssss 871
1.15.11 Pragmas Priority and Interrupt_Priority ... 871
1.L15.12 Pragma Relative_Deadline.........cummsssssssssssssssssss 872
1.15.13 Pragma ASYNCRIONOUScoinmmmmmmssses 872
1.15.14 Elaboration Control Pragmas ... 872
1.15.15 Distribution Pragmas ... 873
Annex] (informative) Language-Defined Aspects and Attributescccouuveinsenns 875
J1 Language-Defined ASPECLS ... 875
J.2 Language-Defined AtIribDUutes ... 879
Annex K (informative) Language-Defined Pragmas.........coosmnmnmsmsmsmsmsmsssssssssssssssssssnss 897
Annex L (informative) Summary of Documentation Requirements.........cocevssuenas 899
L.1 Specific Documentation Requirements. ..., 899
L.2 Implementation-Defined Characteristics ... 901
L.3 Implementation AAVICE ... ————————— 907
Annex M (informative) Syntax SUMMATY ... 916
M.1 Syntax RULES.....ciinsnss s s s sassss s snas 916
M.2 Syntax CroSs ReferencCe......mssssssssssssssss s sssssssssssssssses 941
Annex N (informative) Language-Defined Entities.......ccconnnnninnnnssnnsnsnnsssnssninnns 967
N.1 Language-Defined PAcCKages ... ssssssssssssssssssssses 967
N.2 Language-Defined Types and SUDEYPES.......cmmmmrrcimnnmmmsmmmsssmnsssssssssssssssssssssns 970
N.3 Language-Defined SUDPrograms.......sssssss s 974
N.4 Language-Defined EXCEPiONS ... sssssssssssssssssssssss 987
N.5 Language-Defined ODJectScumsmnmmmsmsmsmsmsmsmsissmssas 988
Biblioraphy ... ——————— 993
1 L. 994

Xii © ISO/IEC 2023 - All rights reserved

ISO/IEC 8652:2023(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of document should be noted. This document was drafted in accordance with the
editorial rules of the [ISO/IEC Directives, Part2 (see www.iso.org/directives or
www.iec.ch/members _experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the
IEC list of patent declarations received (see https://patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

This fourth edition cancels and replaces the third edition (ISO/IEC 8652:2012), which has been
technically revised. It also incorporates the Technical Corrigendum ISO/IEC 8652:2012 /Cor.1:2016.

The main changes are as follows:

— improved support for parallel execution is provided via the introduction of parallel loops, parallel
blocks, parallel container iteration, and parallel reduction;

— more precise specification of subprogram interfaces is supported via the new aspects Global,
Global'Class, and Nonblocking. The Global aspects, in particular, help to determine whether two
constructs can safely execute in parallel;

— Pre and Post aspects can now be specified for access-to-subprogram types and for generic formal
subprograms; a postcondition for the default initialization of a type can be specified using the new
Default_Initial_Condition aspect;

— the behavior of many predefined container operations is now more precisely specified by using
pre- and postcondition specifications instead of English descriptions; a restricted (“stable”) view
for most containers is introduced to support more efficient iteration;

— more flexible uses of static expressions are supported via the introduction of static expression
functions along with fewer restrictions on static strings;

— the Image attribute is supported for nonscalar types, and a user-specifiable attribute Put_Image is
provided, which determines the value of the Image attribute for a user-defined type;

© ISO/IEC 2023 - All rights reserved Xiii

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/iso-standards-and-patents.html
https://patents.iec.ch/
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards

ISO/IEC 8652:2023(E)

the use of numeric and string literals is generalized to allow their use with other categories of
types, via the new aspects Integer_Literal, Real_Literal, and String_Literal;

array and record aggregates are made more flexible: index parameters are allowed in an array
aggregate to define the components as a function of their array index; discriminants can be defined
more flexibly within an aggregate for a variant record type;

new types of aggregates are provided: delta aggregates to allow the construction of a new object by
incremental updates to an existing object; container aggregates to allow construction of an object of
a container type by directly specifying its elements;

a shorthand is provided, using the token '@’, to refer to the target of an assignment statement in the
expression defining its new value;

declare expressions are provided that permit the definition and use of local constants or renamings,
to allow a large expression to be simplified by defining common parts as named entities;

support for lightweight iteration is added via the introduction of procedural iterators;

support for the map-reduce programming strategy is added via the introduction of reduction
expressions;

for constructs that use iterators of any sort, a filter can be specified that restricts the elements
produced by the iteration to those that satisfy the condition of the filter;

predefined packages supporting arbitrary-precision integer and real arithmetic are provided;

the Jorvik profile is introduced to support hard real-time applications that want to go beyond the
restrictions of the Ravenscar profile.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-
committees.

Xiv

© ISO/IEC 2023 - All rights reserved

https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://www.iec.ch/national-committees

ISO/IEC 8652:2023(E)

Introduction

Design Goals

Ada was originally designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency. The 1995 revision to the language was designed to
provide greater flexibility and extensibility, additional control over storage management and
synchronization, and standardized packages oriented toward supporting important application areas,
while at the same time retaining the original emphasis on reliability, maintainability, and efficiency.
Subsequent editions, including this fourth edition, have provided further flexibility and added more
standardized packages within the framework provided by the 1995 revision.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the
language require that program variables be explicitly declared and that their type be specified. Since
the type of a variable is invariant, compilers can ensure that operations on variables are compatible
with the properties intended for objects of the type. Furthermore, error-prone notations have been
avoided, and the syntax of the language avoids the use of encoded forms in favor of more English-like
constructs. Finally, the language offers support for separate compilation of program units in a way that
facilitates program development and maintenance, and which provides the same degree of checking
between units as within a unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt was
made to keep to a relatively small number of underlying concepts integrated in a consistent and
systematic way while continuing to avoid the pitfalls of excessive involution. The design especially aims
to provide language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized
and distributed. Consequently, the ability to assemble a program from independently produced
software components continues to be a central idea in the design. The concepts of packages, of private
types, and of generic units are directly related to this idea, which has ramifications in many other
aspects of the language. An allied concern is the maintenance of programs to match changing
requirements; type extension and the hierarchical library enable a program to be modified while
minimizing disturbance to existing tested and trusted components.

No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or
that lead to the inefficient use of storage or execution time, force these inefficiencies on all machines
and on all programs. Every construct of the language was examined in the light of present
implementation techniques. Any proposed construct whose implementation was unclear or that
required excessive machine resources was rejected. Parallel constructs were introduced to simplify
making safe and efficient use of modern multicore architectures.

Language Summary

An Ada program is composed of one or more program units. Program units can be subprograms (which
define executable algorithms), packages (which define collections of entities), task units (which define
concurrent computations), protected units (which define operations for the coordinated sharing of data
between tasks), or generic units (which define parameterized forms of packages and subprograms).
Each program unit normally consists of two parts: a specification, containing the information that is
visible to other units, and a body, containing the implementation details, which are not visible to other
units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into

© ISO/IEC 2023 - All rights reserved XV

ISO/IEC 8652:2023(E)

individual components. The text of a separately compiled program unit names the library units it
requires.

Program Units

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it can
read data, update variables, or produce some output. It can have parameters, to provide a controlled
means of passing information between the procedure and the point of call. A function is the means of
invoking the computation of a value. It is similar to a procedure, but in addition will return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a package
can be used to define a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

Subprogram and package units can be compiled separately and arranged in hierarchies of parent and
child units giving fine control over visibility of the logical properties and their detailed implementation.

A task unit is the basic unit for defining a task whose sequence of actions can be executed concurrently
with those of other tasks. Such tasks can be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit can define either a single executing task or a
task type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data
shared between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing
protocols can be defined. A protected operation can either be a subprogram or an entry. A protected
entry specifies a Boolean expression (an entry barrier) that blocks the execution of the body until it
evaluates to True. A protected unit can define a single protected object or a protected type permitting
the creation of several similar objects.

Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of
the program unit.

The declarative part associates names with declared entities. For example, a name can denote a type, a
constant, a variable, or an exception. A declarative part also introduces the names and parameters of
other nested subprograms, packages, task units, protected units, and generic units to be used in the
program unit.

The sequence of statements describes a sequence of actions to be performed. The statements are
executed in succession (unless a transfer of control causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on
the value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies
a sequence of statements that are executed repeatedly as directed by an iteration scheme, or until an
exit statement is encountered.

A block statement comprises a sequence of statements preceded by the declaration of local entities
used by the statements.

Certain statements are associated with concurrent execution. A delay statement delays the execution of
a task for a specified duration or until a specified time. An entry call statement is written as a procedure
call statement; it requests an operation on a task or on a protected object, blocking the caller until the
operation can be performed. A called task can accept an entry call by executing a corresponding accept

Xvi © ISO/IEC 2023 - All rights reserved

ISO/IEC 8652:2023(E)

statement, which specifies the actions then to be performed as part of the rendezvous with the calling
task. An entry call on a protected object is processed when the corresponding entry barrier evaluates to
true, whereupon the body of the entry is executed. The requeue statement permits the provision of a
service as a number of related activities with preference control. One form of the select statement
allows a selective wait for one of several alternative rendezvous. Other forms of the select statement
allow conditional or timed entry calls and the asynchronous transfer of control in response to some
triggering event. Various parallel constructs, including parallel loops and parallel blocks, support the
initiation of multiple logical threads of control designed to execute in parallel when multiple processors
are available.

Execution of a program unit can encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation can exceed the maximum allowed value of a number,
or an attempt can be made to access an array component by using an incorrect index value. To deal
with such error situations, the statements of a program unit can be textually followed by exception
handlers that specify the actions to be taken when the error situation arises. Exceptions can be raised
explicitly by a raise statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main categories of types are elementary types (comprising enumeration, numeric, and
access types) and composite types (including array and record types).

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states
or an alphabet of characters. The enumeration types Boolean, Character, Wide_Character, and
Wide_Wide_Character are predefined.

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations
use either fixed point types, with absolute bounds on the error, or floating point types, with relative
bounds on the error. The numeric types Integer, Float, and Duration are predefined.

Composite types allow definitions of structured objects with related components. The composite types
in the language include arrays and records. An array is an object with indexed components of the same
type. A record is an object with named components of possibly different types. Task and protected
types are also forms of composite types. The array types String, Wide_String, and Wide_Wide_String are
predefined.

Record, task, and protected types can have special components called discriminants which
parameterize the type. Variant record structures that depend on the values of discriminants can be
defined within a record type.

Access types allow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator.
Several variables of an access type can designate the same object, and components of one object can
designate the same or other objects. Both the elements in such linked data structures and their relation
to other elements can be altered during program execution. Access types also permit references to
subprograms to be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of a type. A private type can be defined in a package so that only
the logically necessary properties are made visible to the users of the type. The full structural details
that are externally irrelevant are then only available within the package and any child units.

From any type a new type can be defined by derivation. A type, together with its derivatives (both
direct and indirect) form a derivation class. Class-wide operations can be defined that accept as a
parameter an operand of any type in a derivation class. For record and private types, the derivatives
can be extensions of the parent type. Types that support these object-oriented capabilities of class-wide
operations and type extension are tagged, so that the specific type of an operand within a derivation
class can be identified at run time. When an operation of a tagged type is applied to an operand whose
specific type is not known until run time, implicit dispatching is performed based on the tag of the
operand.

© ISO/IEC 2023 - All rights reserved Xvii

ISO/IEC 8652:2023(E)

Interface types provide abstract models from which other interfaces and types can be composed and
derived. This provides a reliable form of multiple inheritance. Interface types can also be implemented
by task types and protected types thereby enabling concurrent programming and inheritance to be
merged.

The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the
set of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with a
limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Aspect clauses can be used to specify the mapping between types and features of an underlying
machine. For example, the user can specify that objects of a given type must be represented with a
given number of bits, or that the components of a record must be represented using a given storage
layout. Other features allow the controlled use of low level, nonportable, or implementation-dependent
aspects, including the direct insertion of machine code.

Aspect clauses can also be used to specify more abstract properties of program entities, such as the
pre- and postconditions of a subprogram, or the invariant for a private type. Additional aspects are
specifiable to allow user-defined types to use constructs of the language, such as literals, aggregates, or
indexing, normally reserved for particular language-defined categories of types, such as numeric types,
record types, or array types.

The predefined environment of the language provides for input-output and other capabilities by means
of standard library packages. Input-output is supported for values of user-defined as well as of
predefined types. Standard means of representing values in display form are also provided.

The predefined standard library packages provide facilities such as string manipulation, containers of
various kinds (vectors, lists, maps, etc.), mathematical functions, random number generation, and
access to the execution environment.

The specialized annexes define further predefined library packages and facilities with emphasis on
areas such as real-time scheduling, interrupt handling, distributed systems, numerical computation,
and high-integrity systems.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and
packages) and so allow general algorithms and data structures to be defined that are applicable to all
types of a given class.

Xviii © ISO/IEC 2023 - All rights reserved

INTERNATIONAL STANDARD ISO/IEC 8652:2023(E)

Information technology — Programming Languages — Ada

1 Scope

This document specifies the form and meaning of programs written in Ada. Its purpose is to promote
the portability of Ada programs to a variety of computing systems.

This document specifies:

— The form of a program written in Ada;

— The effect of translating and executing such a program;

— The manner in which program units can be combined to form Ada programs;

— The language-defined library units that a conforming implementation is required to supply;

— The permissible variations in conformance to the rules of this document, and the manner in which
they are to be documented;

— Those violations of the requirements of this document that a conforming implementation is
required to detect, and the effect of attempting to translate or execute a program containing such
violations;

— Those violations of the requirements of this document that a conforming implementation is not
required to detect.

This document does not specify:

— The means whereby a program written in Ada is transformed into object code executable by a
processor;

— The means whereby translation or execution of programs is invoked and the executing units are
controlled;

— The size or speed of the object code, or the relative execution speed of different language
constructs;

— The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

— The effect of unspecified execution;

— The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 639-3:2007, Codes for the representation of names of languages — Part 3: Alpha-3 code for
comprehensive coverage of languages

ISO 3166-1:2020, Codes for the representation of names of countries and their subdivisions — Part 1:
Country codes

ISO/IEC 10646:2020, Information technology — Universal coded character set (UCS)

© ISO/IEC 2023 - All rights reserved 1

