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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of document should be noted. This document was drafted in accordance with the
editorial rules of the [ISO/IEC Directives, Part2 (see www.iso.org/directives or
www.iec.ch/members _experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the
IEC list of patent declarations received (see https://patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see
www.iso.org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

This fourth edition cancels and replaces the third edition (ISO/IEC 8652:2012), which has been
technically revised. It also incorporates the Technical Corrigendum ISO/IEC 8652:2012 /Cor.1:2016.

The main changes are as follows:

— improved support for parallel execution is provided via the introduction of parallel loops, parallel
blocks, parallel container iteration, and parallel reduction;

— more precise specification of subprogram interfaces is supported via the new aspects Global,
Global'Class, and Nonblocking. The Global aspects, in particular, help to determine whether two
constructs can safely execute in parallel;

— Pre and Post aspects can now be specified for access-to-subprogram types and for generic formal
subprograms; a postcondition for the default initialization of a type can be specified using the new
Default_Initial_Condition aspect;

— the behavior of many predefined container operations is now more precisely specified by using
pre- and postcondition specifications instead of English descriptions; a restricted (“stable”) view
for most containers is introduced to support more efficient iteration;

— more flexible uses of static expressions are supported via the introduction of static expression
functions along with fewer restrictions on static strings;

— the Image attribute is supported for nonscalar types, and a user-specifiable attribute Put_Image is
provided, which determines the value of the Image attribute for a user-defined type;
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the use of numeric and string literals is generalized to allow their use with other categories of
types, via the new aspects Integer_Literal, Real_Literal, and String_Literal;

array and record aggregates are made more flexible: index parameters are allowed in an array
aggregate to define the components as a function of their array index; discriminants can be defined
more flexibly within an aggregate for a variant record type;

new types of aggregates are provided: delta aggregates to allow the construction of a new object by
incremental updates to an existing object; container aggregates to allow construction of an object of
a container type by directly specifying its elements;

a shorthand is provided, using the token '@’, to refer to the target of an assignment statement in the
expression defining its new value;

declare expressions are provided that permit the definition and use of local constants or renamings,
to allow a large expression to be simplified by defining common parts as named entities;

support for lightweight iteration is added via the introduction of procedural iterators;

support for the map-reduce programming strategy is added via the introduction of reduction
expressions;

for constructs that use iterators of any sort, a filter can be specified that restricts the elements
produced by the iteration to those that satisfy the condition of the filter;

predefined packages supporting arbitrary-precision integer and real arithmetic are provided;

the Jorvik profile is introduced to support hard real-time applications that want to go beyond the
restrictions of the Ravenscar profile.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-
committees.

Xiv
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Introduction

Design Goals

Ada was originally designed with three overriding concerns: program reliability and maintenance,
programming as a human activity, and efficiency. The 1995 revision to the language was designed to
provide greater flexibility and extensibility, additional control over storage management and
synchronization, and standardized packages oriented toward supporting important application areas,
while at the same time retaining the original emphasis on reliability, maintainability, and efficiency.
Subsequent editions, including this fourth edition, have provided further flexibility and added more
standardized packages within the framework provided by the 1995 revision.

The need for languages that promote reliability and simplify maintenance is well established. Hence
emphasis was placed on program readability over ease of writing. For example, the rules of the
language require that program variables be explicitly declared and that their type be specified. Since
the type of a variable is invariant, compilers can ensure that operations on variables are compatible
with the properties intended for objects of the type. Furthermore, error-prone notations have been
avoided, and the syntax of the language avoids the use of encoded forms in favor of more English-like
constructs. Finally, the language offers support for separate compilation of program units in a way that
facilitates program development and maintenance, and which provides the same degree of checking
between units as within a unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt was
made to keep to a relatively small number of underlying concepts integrated in a consistent and
systematic way while continuing to avoid the pitfalls of excessive involution. The design especially aims
to provide language constructs that correspond intuitively to the normal expectations of users.

Like many other human activities, the development of programs is becoming ever more decentralized
and distributed. Consequently, the ability to assemble a program from independently produced
software components continues to be a central idea in the design. The concepts of packages, of private
types, and of generic units are directly related to this idea, which has ramifications in many other
aspects of the language. An allied concern is the maintenance of programs to match changing
requirements; type extension and the hierarchical library enable a program to be modified while
minimizing disturbance to existing tested and trusted components.

No language can avoid the problem of efficiency. Languages that require over-elaborate compilers, or
that lead to the inefficient use of storage or execution time, force these inefficiencies on all machines
and on all programs. Every construct of the language was examined in the light of present
implementation techniques. Any proposed construct whose implementation was unclear or that
required excessive machine resources was rejected. Parallel constructs were introduced to simplify
making safe and efficient use of modern multicore architectures.

Language Summary

An Ada program is composed of one or more program units. Program units can be subprograms (which
define executable algorithms), packages (which define collections of entities), task units (which define
concurrent computations), protected units (which define operations for the coordinated sharing of data
between tasks), or generic units (which define parameterized forms of packages and subprograms).
Each program unit normally consists of two parts: a specification, containing the information that is
visible to other units, and a body, containing the implementation details, which are not visible to other
units. Most program units can be compiled separately.

This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into
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individual components. The text of a separately compiled program unit names the library units it
requires.

Program Units

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it can
read data, update variables, or produce some output. It can have parameters, to provide a controlled
means of passing information between the procedure and the point of call. A function is the means of
invoking the computation of a value. It is similar to a procedure, but in addition will return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a package
can be used to define a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

Subprogram and package units can be compiled separately and arranged in hierarchies of parent and
child units giving fine control over visibility of the logical properties and their detailed implementation.

A task unit is the basic unit for defining a task whose sequence of actions can be executed concurrently
with those of other tasks. Such tasks can be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit can define either a single executing task or a
task type permitting the creation of any number of similar tasks.

A protected unit is the basic unit for defining protected operations for the coordinated use of data
shared between tasks. Simple mutual exclusion is provided automatically, and more elaborate sharing
protocols can be defined. A protected operation can either be a subprogram or an entry. A protected
entry specifies a Boolean expression (an entry barrier) that blocks the execution of the body until it
evaluates to True. A protected unit can define a single protected object or a protected type permitting
the creation of several similar objects.

Declarations and Statements

The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of
the program unit.

The declarative part associates names with declared entities. For example, a name can denote a type, a
constant, a variable, or an exception. A declarative part also introduces the names and parameters of
other nested subprograms, packages, task units, protected units, and generic units to be used in the
program unit.

The sequence of statements describes a sequence of actions to be performed. The statements are
executed in succession (unless a transfer of control causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

Case statements and if statements allow the selection of an enclosed sequence of statements based on
the value of an expression or on the value of a condition.

The loop statement provides the basic iterative mechanism in the language. A loop statement specifies
a sequence of statements that are executed repeatedly as directed by an iteration scheme, or until an
exit statement is encountered.

A block statement comprises a sequence of statements preceded by the declaration of local entities
used by the statements.

Certain statements are associated with concurrent execution. A delay statement delays the execution of
a task for a specified duration or until a specified time. An entry call statement is written as a procedure
call statement; it requests an operation on a task or on a protected object, blocking the caller until the
operation can be performed. A called task can accept an entry call by executing a corresponding accept
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statement, which specifies the actions then to be performed as part of the rendezvous with the calling
task. An entry call on a protected object is processed when the corresponding entry barrier evaluates to
true, whereupon the body of the entry is executed. The requeue statement permits the provision of a
service as a number of related activities with preference control. One form of the select statement
allows a selective wait for one of several alternative rendezvous. Other forms of the select statement
allow conditional or timed entry calls and the asynchronous transfer of control in response to some
triggering event. Various parallel constructs, including parallel loops and parallel blocks, support the
initiation of multiple logical threads of control designed to execute in parallel when multiple processors
are available.

Execution of a program unit can encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation can exceed the maximum allowed value of a number,
or an attempt can be made to access an array component by using an incorrect index value. To deal
with such error situations, the statements of a program unit can be textually followed by exception
handlers that specify the actions to be taken when the error situation arises. Exceptions can be raised
explicitly by a raise statement.

Data Types

Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main categories of types are elementary types (comprising enumeration, numeric, and
access types) and composite types (including array and record types).

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states
or an alphabet of characters. The enumeration types Boolean, Character, Wide_Character, and
Wide_Wide_Character are predefined.

Numeric types provide a means of performing exact or approximate numerical computations. Exact
computations use integer types, which denote sets of consecutive integers. Approximate computations
use either fixed point types, with absolute bounds on the error, or floating point types, with relative
bounds on the error. The numeric types Integer, Float, and Duration are predefined.

Composite types allow definitions of structured objects with related components. The composite types
in the language include arrays and records. An array is an object with indexed components of the same
type. A record is an object with named components of possibly different types. Task and protected
types are also forms of composite types. The array types String, Wide_String, and Wide_Wide_String are
predefined.

Record, task, and protected types can have special components called discriminants which
parameterize the type. Variant record structures that depend on the values of discriminants can be
defined within a record type.

Access types allow the construction of linked data structures. A value of an access type represents a
reference to an object declared as aliased or to an object created by the evaluation of an allocator.
Several variables of an access type can designate the same object, and components of one object can
designate the same or other objects. Both the elements in such linked data structures and their relation
to other elements can be altered during program execution. Access types also permit references to
subprograms to be stored, passed as parameters, and ultimately dereferenced as part of an indirect call.

Private types permit restricted views of a type. A private type can be defined in a package so that only
the logically necessary properties are made visible to the users of the type. The full structural details
that are externally irrelevant are then only available within the package and any child units.

From any type a new type can be defined by derivation. A type, together with its derivatives (both
direct and indirect) form a derivation class. Class-wide operations can be defined that accept as a
parameter an operand of any type in a derivation class. For record and private types, the derivatives
can be extensions of the parent type. Types that support these object-oriented capabilities of class-wide
operations and type extension are tagged, so that the specific type of an operand within a derivation
class can be identified at run time. When an operation of a tagged type is applied to an operand whose
specific type is not known until run time, implicit dispatching is performed based on the tag of the
operand.

© ISO/IEC 2023 - All rights reserved Xvii



ISO/IEC 8652:2023(E)

Interface types provide abstract models from which other interfaces and types can be composed and
derived. This provides a reliable form of multiple inheritance. Interface types can also be implemented
by task types and protected types thereby enabling concurrent programming and inheritance to be
merged.

The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the
set of allowed values of a type. Subtypes can be used to define subranges of scalar types, arrays with a
limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Aspect clauses can be used to specify the mapping between types and features of an underlying
machine. For example, the user can specify that objects of a given type must be represented with a
given number of bits, or that the components of a record must be represented using a given storage
layout. Other features allow the controlled use of low level, nonportable, or implementation-dependent
aspects, including the direct insertion of machine code.

Aspect clauses can also be used to specify more abstract properties of program entities, such as the
pre- and postconditions of a subprogram, or the invariant for a private type. Additional aspects are
specifiable to allow user-defined types to use constructs of the language, such as literals, aggregates, or
indexing, normally reserved for particular language-defined categories of types, such as numeric types,
record types, or array types.

The predefined environment of the language provides for input-output and other capabilities by means
of standard library packages. Input-output is supported for values of user-defined as well as of
predefined types. Standard means of representing values in display form are also provided.

The predefined standard library packages provide facilities such as string manipulation, containers of
various kinds (vectors, lists, maps, etc.), mathematical functions, random number generation, and
access to the execution environment.

The specialized annexes define further predefined library packages and facilities with emphasis on
areas such as real-time scheduling, interrupt handling, distributed systems, numerical computation,
and high-integrity systems.

Finally, the language provides a powerful means of parameterization of program units, called generic
program units. The generic parameters can be types and subprograms (as well as objects and
packages) and so allow general algorithms and data structures to be defined that are applicable to all
types of a given class.
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Information technology — Programming Languages — Ada

1 Scope

This document specifies the form and meaning of programs written in Ada. Its purpose is to promote
the portability of Ada programs to a variety of computing systems.

This document specifies:

— The form of a program written in Ada;

— The effect of translating and executing such a program;

— The manner in which program units can be combined to form Ada programs;

— The language-defined library units that a conforming implementation is required to supply;

— The permissible variations in conformance to the rules of this document, and the manner in which
they are to be documented;

— Those violations of the requirements of this document that a conforming implementation is
required to detect, and the effect of attempting to translate or execute a program containing such
violations;

— Those violations of the requirements of this document that a conforming implementation is not
required to detect.

This document does not specify:

— The means whereby a program written in Ada is transformed into object code executable by a
processor;

— The means whereby translation or execution of programs is invoked and the executing units are
controlled;

— The size or speed of the object code, or the relative execution speed of different language
constructs;

— The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

— The effect of unspecified execution;

— The size of a program or program unit that will exceed the capacity of a particular conforming
implementation.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 639-3:2007, Codes for the representation of names of languages — Part 3: Alpha-3 code for
comprehensive coverage of languages

ISO 3166-1:2020, Codes for the representation of names of countries and their subdivisions — Part 1:
Country codes

ISO/IEC 10646:2020, Information technology — Universal coded character set (UCS)
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